Decomposing Berge Graphs Containing No Proper Wheel, Long Prism Or Their Complements

نویسندگان

  • Michele Conforti
  • Gérard Cornuéjols
  • Giacomo Zambelli
چکیده

In this paper we show that, if G is a Berge graph such that neither G nor its complement G contains certain induced subgraphs, named proper wheels and long prisms, then either G is a basic perfect graph (a bipartite graph, a line graph of a bipartite graph or the complement of such graphs) or it has a skew partition that cannot occur in a minimally imperfect graph. This structural result implies that

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On 4-critical t-perfect graphs

It is an open question whether the chromatic number of t-perfect graphs is bounded by a constant. The largest known value for this parameter is 4, and the only example of a 4-critical t-perfect graph, due to Laurent and Seymour, is the complement of the line graph of the prism Π (a graph is 4-critical if it has chromatic number 4 and all its proper induced subgraphs are 3-colorable). In this pa...

متن کامل

Even Pairs and Prism Corners in Square-Free Berge Graphs

Let G be a Berge graph such that no induced subgraph is a 4-cycle or a line-graph of a bipartite subdivision of K4. We show that every such graph G either is a complete graph or has an even pair.

متن کامل

Even Pairs and Prism Corners in Berge Graphs

Let G be a Berge graph such that no induced subgraph is a 4-cycle or a line-graph of a bipartite subdivision of K4. We show that every such graph G either is a complete graph or has an even pair.

متن کامل

Berge trigraphs

A graph is Berge if no induced subgraph of it is an odd cycle of length at least five or the complement of one. In joint work with Robertson, Seymour, and Thomas we recently proved the Strong Perfect Graph Theorem, which was a conjecture about the chromatic number of Berge graphs. The proof consisted of showing that every Berge graph either belongs to one of a few basic classes, or admits one o...

متن کامل

Defective Choosability of Graphs without Small Minors

For each proper subgraph H of K5, we determine all pairs (k, d) such that every H-minor-free graph is (k, d)-choosable or (k, d)-choosable. The main structural lemma is that the only 3-connected (K5 − e)-minor-free graphs are wheels, the triangular prism, and K3,3; this is used to prove that every (K5 − e)-minor-free graph is 4-choosable and (3, 1)-choosable.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Combinatorica

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2006